

Appendix I. Example I-B. Table of Crude Data for 2- and/or 3- Drug Combinations and Summary of Results. Cancer Cell System in Vitro.

Table 11. Example of experimental design and dose-effect relationships of paclitaxel, cisplatin, and topotecan and their two- and three-drug combinations on growth inhibition of 833K teratocarcinoma cells after 96 hours' exposure

(Adopted from Chou et al, 1994, *J Natl Cancer Inst* 86: 1517-1524. For Details of Analysis See CompuSyn Report for Appendix I-B)*

Drug, μM			Parameter [†]				
Paclitaxel	Cisplatin	Topotecan	Fractional Inhibition, f_a	m	$D_m, \mu\text{M}$	r	CI [‡]
(D) ₁							
0.002			0.429				
0.004			0.708				
0.005			0.761				
0.01			0.882				
0.02			0.932	1.248	0.00217	.990	
(D) ₂							
0.05			0.055				
0.1			0.233				
0.2			0.301				
0.5			0.559				
1.0			0.821				
2.0			0.953	1.459	0.320	.986	
(D) ₃							
0.01			0.069				
0.02			0.213				
0.05			0.373				
0.1			0.785				
0.2			0.940				
0.5			0.991	1.855	0.0462	.991	
(D) ₁ +(D) ₂ (1:100) [§]							
0.001	0.1		0.450				0.900
0.002	0.2		0.701				0.815
0.005	0.5		0.910		0.0001147		0.681
0.01	1.0		0.968	1.572	+ 0.11471	.999	0.602
(D) ₂ +(D) ₃ (100:10)							
0.05	0.005		0.304				0.445
0.1	0.01		0.413				0.658
0.2	0.02		0.675				0.669
0.5	0.05		0.924		0.1053		0.561
1.0	1.0		0.977	1.588	+ 0.01053	.989	0.522
(D) ₁	+	(D) ₃ (1:10)					
0.001		0.01	0.274				1.373
0.002		0.02	0.579				1.078
0.005		0.05	0.901		0.00166		0.719
0.01		0.1	0.965	1.891	+ 0.01661	.999	0.681
(D) ₁ +(D) ₂ +(D) ₃ (1:100:10)							
0.001	0.1	0.01	0.456				1.121
0.002	0.2	0.02	0.806		0.001162		0.729
0.003	0.3	0.03	0.947		+ 0.11616		0.403
0.005	0.5	0.05	0.995	3.363	+ 0.011612	.984	0.136

* Experimental data were subjected to automated calculation of m, D_m and r parameters as well as plots simulations using a software, CompuSyn (Chou and Martin, 2005).

† The parameters m, D_m , and r are the slope, antilog of x-intercept, and the linear correlation coefficient of the median-effect plot, which signifies the shape of the dose-effect curve, the potency (IC₅₀), and the conformity of the data to the mass-action law, respectively. D_m and m values are used for calculating the CI values.

‡ CI<1, CI=1, and CI>1 indicate synergism, additivity, and antagonism, respectively. As based on the classic isobologram equation, CI can be calculated by Eq. 16: CI = [(D)₁/(D_x)₁] + [(D)₂/(D_x)₂], where D_x = $D_m[f_a/(1-f_a)]^{1/m}$ (Eq. 8).

[§] Drug mixture was serially diluted and added to incubation mixture at 0 hour. The combination ratio was approximately equal to the D_m ratio of the component drugs (i.e., close to their equipotency ratio).

[¶] Sample pocket calculator for calculation of the CI value of 0.005 μM paclitaxel + 5 μM cisplatin that inhibited 833K cell growth by 91.0% (f_a = 0.910). On the basis of Eq. 8, for paclitaxel alone to inhibit cell growth by 91% would require [D_{0.91}]_{paclitaxel} = (D_m)_{paclitaxel} [0.91/(1-0.91)]^{1/1.248} = 0.00217 μM x 6.385 = 0.01385 μM and for cisplatin alone to inhibit cell growth by 91% would require [D_{0.91}]_{cisplatin} = (D_m)_{cisplatin} [0.91/(1-0.91)]^{1/1.458} = 0.320 μM x 4.888 = 1.564 μM. Therefore,

$$CI = \frac{0.005 \mu M}{0.01385 \mu M} + \frac{0.5 \mu M}{1.564 \mu M} = 0.681 \text{ at 91% inhibition.}$$

Comments by T.C. Chou on Example I-B:

1. The left three columns actually showed experimental design for 3 drugs: A, B, and C. The dose-effect curves for A, B, and C each alone is absolutely required since their parameters m (shape), D_m (IC₅₀ for potency) and r (how good are the data) can be automatically determined, where m and D_m values for each drug are required for CI calculation in combinations.
2. Note that A:B:C = 1:100:10 which is not too far from the IC₅₀ ratios. So, each drug contributed the effect significantly or nearly equally in the combinations (in this case, the mixtures). Also note the A:B = 1:100, B:C = 100:10, and A:C = 1:10, are all in constant ratio combinations and are in correspondence with A:B:C = 1:100:10 for most simple and efficient analysis.
3. The 2- and 3- drug combinations can be done at the same time, and the single-drug parameters can be shared for combinations. We can do only 2-drug combinations only or 3-drug combinations only. But the present design allows the dissections of 3-drug outcome with 2-drug components combination outcomes (i.e., A+B+C dissect with A+B, B+C, and A+C).
4. It is suggested that this large size experiment to be carried out at one time so that the assay conditions would be nearly the same.
5. The right column only presents the CI values for each of the actual drug combination data points for synergism (CI<1) or antagonism (CI>1). The CI values at any effect (or dose) levels are shown in CompuSyn Report's Fa-CI tables and Fa-CI plot (Chou-Talalay plot).